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Ahstraet-Numerical computations based on the control volume approach using orthogonal coordinates 
are carried out for conjugate natural convection within a horizontal cylindrical annulus. The purpose is to 
study the possible suppression of convection by azimuthal bathes. The bathes are placed at the top, central 
and bottom regions of the annular gap. The Rayleigh number based on the annular gap width is varied 
from 1.0 x 10’ to lo6 for radius ratios of 4.0 and 1.4. The fluid is air, and the transport properties depend 
on temperature. The most efficient way of reducing heat transfer is the case where the bathe prevents direct 
flow onto the inner and outer cylinders. When the baffle is at the position where the crescent-shaped 
streamlines are stretched, an increase of heat transfer occurs. Only a small reduction in heat transfer is 

obtained when the bahle is placed in the stagnant region of the annulus. 

INTRODUCTION 

TIIE STUDY of natural convection in a horizontal annu- 
lus has many important applications such as insu- 
lation of underground pipe-in-pipe systems, electronic 
cooling, aircraft cabin insulation, solar collector 
design, nuclear reactor design, etc. Under certain cir- 
cumstances, the convection needs to be suppressed in 
the annulus and thus may become one of the impor- 
tant considerations in the design process. Con- 
siderable experimental and numerical studies have 
been directed towards understanding the physics of 
the natural convection phenomena in the concentric 
and eccentric cylindrical annuli. Comprehensive and 
excellent reviews of the investigations up to 1976 have 
been given by Kuehn and Goldstein [ 1,2] and will not 
be repeated here. In recent years, studies have been 
made in the high Rayleigh number range [3, 41, con- 
centric and eccentric annuli with and without rotation 
[5-lo], effect of variable properties [ll-141, mixed 
boundary conditions [15, 161, other physical effects 
[17-211, three-dimensionality [22-241, density inver- 
sion [25,26], and transient responses [27,28]. 

Farouk and Guceri [4] presented numerical solu- 
tions for Ra ranging from lo6 to 10’ with a K-E tur- 
bulence model and a radius ratio of 2.6. The results 
showed good agreement with experimental data. Pro- 
jahn et al. [7] used a body-fitted coordinate system to 
investigate the local and overall heat transfer between 
concentric and eccentric horizontal cylinders for the 
following range of parameters, Ra from lo2 to lo’, 

Prandtl number of 0.7, and various eccentric positions 
of the inner cylinder. The same problem has been 
studied numerically by Cho et al. [8] using a bipolar 
coordinate system and by Prusa and Yao using a 
radial transformation. The study by Lee [lo] indicated 
that the rotation of the inner cylinder causes a 
decrease in Nusselt number throughout the flow for 
a fixed Rayleigh number. Hessami et al. [l 11, Mahony 
et al. [13] and Bishop and Brandon [14] investigated 
the effect of variable properties on the natural con- 
vection in the horizontal annulus, their findings are 
almost the same as those in a square enclosure studied 
by Zhong et al. [29]. Basically, the Boussinesq 
approximation is valid for a temperature difference 
ratio (Tn - Tc)/Tc < 0.1, but can be used for the ratio 
up to 0.2 with reasonable accuracy in the calculated 
heat transfer rate. The Boussinesq approximation 
does overestimate the tangential velocity and tem- 
perature gradient near the hot inner cylinder. Kumar 
[ 151 presented the numerical results for constant heat 
flux at the inner cylinder and isothermal condition at 
the outer cylinder. A lower effective sink temperature 
is obtained when it is compared to isothermal heating, 
thus a higher heat transfer rate is expected. Glakpe et 
al. [ 161 studied a problem similar to the one by Kumar 
[15], but with a diffuse radiative wall and where ver- 
tical variation of eccentric position is taken into 
account. As emissivity is changed from 0 to 0.6, the 
heat transfer rate decreases significantly for all Ray- 
leigh numbers investigated. Rao etul. [23] investigated 
numerically and experimentally the natural convective 
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NOMENCLATURE 

a coefficients in equation (12) 
A area 

CP isobaric specific heat 

CP” mean specific heat 

9 determinant of covariant metric 
tensor g,, 

c gil contra-covariant metric tensor 
gravitational acceleration vector, 
i= 1,2,3 

hi scale factor in the direction xl 
J total heat flux 
k thermal conductivity 
k 

kzi, keqo 

equivalent conductivity 
equivalent conductivity at inner 

and outer cylinders, respectively 
L length scale, R, - R, 
II’ normal vector, i = 1,2,3 
Nu Nusselt number, hL/k 

P static pressure 
Pr Prandtl number 

qi conduction heat llux in the direction i 

Q heat flux 
R radial coordinate 
Ri, R, radii of inner and outer cylinders, 

respectively 
RR radius ratio, R,/R, 

Ra Rayleigh number, pgfl( TH - Tc)L3ipKa, 
T temperature 
Ui velocity components, i = 1,2,3 
2: volume 
Xi orthogonal coordinates, i = I, 2,3 
AX’ incremental dependent variable. 

Greek symbols 
thermal diffusivity 

; volume expansion coefficient 
6. 
8” 

Kronecker delta 
angular coordinate 

p dynamic viscosity 

P density 
ai shear stress tensor. 

Subscripts 
C cold wall 
H hot wall 
i,_i, k coordinate indices 
n, s, e, w nodal designation on the control 

volume surfaces 
P, N, S, E, W nodal designation of basic grid 
R reference quantities 
s solid 
t time derivative. 

flow in horizontal concentric annuli with emphasis on 
the various flow patterns. By two- and three-dimen- 
sional calculations over a range of Ra and radius ratio, 
the transition to the multicellular flow pattern which 
has been observed in Powe et al.3 experiment [30] is 
confirmed, and an oscillating flow is generated at the 
upper part of the annulus as Rayleigh number 
increases. A similar problem has also been studied by 
Fusegi and Farouk [24] with a relatively small axial 
length to show the end effects. 

Clearly, most of the investigations so far are for the 
plain annuli. A few investigations are on annuli with 
radial spacers [31, 321 or with various transverse fins 
[33-351. Kwon et al. [31] studied, both theoretically 
and experimentally, convection in an annulus with 
three equally spaced axial spacers. A spacer made of 
material with low thermal cond@tivity reduces heat 
transfer by as much as 20%, while the one with high 
conductivity suppresses the natural convection heat 
transfer between the cylinders. Good agreement with 
experimental data on temperature distribution and 
local heat transfer coefficients were obtained. The 
experimental study by Babus’Haq et al. [32] with 
eccentric cylinders found a 20% decrease in heat trans- 
fer with two low conductivity radial spacers and an 
8% increase with a single vertical baffle. The studies 
by Kwon and co-workers 133, 341 and Tolpadi and 
Kuehn [35] are about horizontal cylinders in the infi- 

nite medium with conducting plate fins and transverse 
circular fins. 

This paper is motivated by an interest in dem- 
onstrating the possible suppression of natural con- 
vection and reduction of heat transfer in horizontal 
concentric cylindrical annuli using azimuthal baffles 
as well as in revealing complex interactions between 
the baffle and the fluid. Our attention is directed 
largely to locating the baffles midway between the 
cylinders (at (R,+Ri)/2), with an arc length sub- 
tended by an angle of 90” at several symmetric 
positions. The baffle positions are shown in Fig. 1. 
Here, an inner cylinder is heated at a higher tem- 
perature TH, an outer cylinder surface is maintained 
at a lower temperature T,. The following cases are 
considered. In type I (Fig. l(a)) the azimuthal angle 
subtended by the baffle is from -45” to 45” ; type II 
(Fig. l(b)) from 135” to 225” ; type III (Fig. l(c)), a 
combination of types I and II ; type IV (Fig. l(d)) 
from 45” to 135”, and from 225” to 315”; and type V 
(Fig. l(e)), a combination of types III and IV, or a 
complete partition. The length scale L is taken as 
(R,- Ri), the difference between the radii of the cyl- 
inders. The ratio of the thermal conductivity of the 
baffle material to that of the fluid (at Tc) is 10. The 
thickness of the baffle is 1/36L. The Rayleigh number 
based on L in this study varies from 10’ to lo6 for 
radius ratios (R,/R,) of 1.4 and 4.0. 
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FIG. 1. Geometries of cylindrical annulus with several types of baMes. 

The numerical solution procedure is based on 
primitive variables and the temperature dependence 
of transport properties is taken into account. The 
Boussinesq approximation is not invoked. The 
governing equation is based on the control volume 
approach using orthogonal coordinates. The results 
of this study have been validated with experimental 
and other numerical results available in the literature 
for the limiting cases of the plain annuli. 

GOVERNING EQUATIONS AND SOLUTION 

PROCEDURE 

The equations describing the natural convection 
phenomena inside an annulus are the conservation 
equations of mass, momentum and energy. In most 
previous studies they are written in cylindrical polar 
coordinates. The equations used in this study are, 
however, in orthogonal coordinates. The advantage 
of orthogonal coordinates lies in its generality. Thus 
complex geometries can be dealt with. Moreover, once 
the computer code is written, various geometries 
definable by orthogonal coordinates can be studied 
by merely changing the scale factors h, (see below for 
definition). The computer program used in this paper 
was originally written for solving the three-dimen- 
sional mass, momentum and energy equations in 
generalized three-dimensional orthogonal coor- 
dinates with application to the problem of fire spread 
in a confined pressure vessel [36]. The success of the 
code in simulating the natural convection in three- 
dimensional confined enclosures has been dem- 
onstrated in ref. [371. The present computation, how- 
ever, is carried out for the two-dimensional flow since 
the three-dimensional effects exist only near the end 
walls [24]. Moreover, the two-dimensional calculation 

requires less CPU time. As a result, the grid can be 
refined and a better accuracy can be realized. 

The governing equations in the Cartesian coor- 
dinates in the tensor form have been used in our 
previous studies. The corresponding equations in the 
orthogonal coordinates can be obtained using stan- 
dard tensor transformations as shown in ref. [37]. The 
equations for the fluid medium then take the following 
forms : 

pt +g- yg”2pU’/hi) = 0 (1) 

@II’), +g- 1’2(g”zpuiu~/hi)J = -~,~/h,+pG’ 

+g-“2(g”2a~/hj)j-(h,)j/(h,hj)(pu’u’-aj) 

+(hj),J(hihj)@#‘d -u;> (2) 

~C,,T),+g-"2(g"2pCpmUiT/hi),i 

=- g-"2(g"2qi/hi),i. (3) 

Here p is the fluid density, u’ the contravariant 
component of the velocity vector, g the determinant 
of covariant metric tensor gii, hi the scale factor, p 
the static pressure, G’ the component of the gravity 
acceleration vector, a! the stress tensor, cp” the mean 
isobaric heat capacity, q, the conduction heat flux, p 
the dynamic viscosity, and subscript t denotes deriva- 
tives with respect to time. 

It should be noted that the scale factor hi is for the 
curvilinear coordinates in the direction i, it is not a 
component. Therefore, the summation rule does not 
apply to the index of hi. 

The shear stress tensor is given by 

c:’ = ~[hjlhi(ui/hj>,i+hi/hjv/h,)j 

+2(hi),Uk/(hjhk)Bj-_g-"2(g"211k/h~),k~j] (4) 

and the conduction heat flux qi by 
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qi = -k/h, T.; (5) 

here k is the thermal conductivity of the fluid. 
The equation governing the energy transport inside 

the baffles is the heat conduction equation 

(P&nT,), = -s-“2(s’~2Yi/~,).I. (6) 

Here the conduction flux is given by 

4: = -k,lMT,),,. (7) 

Subscript s denotes the solid. 
The boundary conditions at the cylindrical surfaces 

are the prescribed temperatures, and the non-slip con- 
ditions. At the interface of the baffle and fluid, the 
compatibility conditions of temperature and heat flux 
are required 

T = T,, q’n’ = q;n’ (8) 

or 

k/h,(T),@ = kSlhi(TF),in’ (9) 

where ni is the component of the unit vector normal 
to the interface. 

The control volume approach as described in ref. 
[37] to solve equations (l)-(3) is utilized. Basically, 
the conservation equations are first integrated over 
the control volume of g ‘j2 dx’ dx*. The convective and 
diffusive terms can be expressed adequately in terms 
of the value at the surfaces of the cell, a procedure 
similar to the one in the Cartesian coordinates as 
described by Patankar [38]. The difference lies in the 

fact that the surface area is allowed to change from 
point to point. The tensor terms due to the curvature 
of the coordinates are averaged in the cell. For 
example, equation (3) will become, after integration 

(pc,,T),Av+J:A,-J~A,+J,2A,-J,2A, = 0. (10) 

Here J is the total heat flux due to convection and 
conduction, A the area (h,Ax’h,Axj), v the volume, 
and subscripts e, w, n and s denote the point at which 
it is to be evaluated, as shown in Fig. 2. Thus 

J’ = pcpmu’T-q’. (11) 

The approximation to the convective term pc,,u’T 
is by the QUICK scheme, and conduction terms by 

FIG. 2. Orthogonal control volume and nodal points. 

central difference as utilized in our previous studies 
[39, 401. 

The finite difference equations can be finally written 
as 

apTp = a,T,+uv,Tw+uhiT.,+a,Ts. (12) 

The solution procedure of equation (12) follows the 
standard tridiagonal matrix solver algorithm. 

The treatment of conduction equation (6) inside 
baffles is somewhat similar. After integrating equation 
(6), the same form as equation (10) is obtained, but 
with 

J’ = -q;. (13) 

By imposing zero velocity inside the baffles, one 
can reduce expression (11) to equation (13) at the 
interfaces, so that the heat flux compatibility con- 
dition can be automatically satisfied, when the con- 
duction equation (6) is grouped into equation (3). 
For the momentum equations, an analogous finite 
difference equation, equation (12), can be formed, but 
with T replaced by u’ or IA’. When baffles are to be 
considered, modifications are to be made in terms of 
a’s, so that the velocities inside the baffles are always 
zero. 

RESULTS AND DISCUSSIONS 

Initial solutions are obtained first for the unob- 
structed annulus case, so that direct comparison with 
published results can be made. After validating the 
program with published results, computations for 
cases with baffles are then performed. 

Accuracy of the numerical solutions 
From the symmetry of the problem, clearly, only 

half the cylinder needs to be considered. Validation 
studies of the present solution algorithm and the code 
have been performed by generating a solution which 
can be compared directly with previously published 
results. The results for the case of RR = 2.6 and 
Ra = 4.7 x lo4 studied by Kuehn and Goldstein [I] 
using air were considered, since other investigators 
have also used their data for validation. The transport 
properties of the fluid (air) are allowed to vary with 
temperature. The density of air is evaluated from the 
equation of state, and other properties are taken from 

those in ref. [41], namely 

cP = 0.2383-0.7915 x lo-‘T 

+0.4834x 10--7T2 kJ kg-’ Km’ (14) 

p = (14.58x 10~5T312)/(l10.4+T) kgs-‘m-’ 

(15) 

k = (2.6482 x 10--6T”2)/ 

(1+245,4x 10’~ ‘2’7)/7’)Wm~’ Km’. (16) 

As for the present study, T,: is fixed at 288.15 K, 
and the dimensionless temperature ratio (TH-- TC)/TC 
is taken to be 0.2, which is the threshold value for the 
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validity of the Boussinesq approximation [13]. The 
computations have been carried out on an IBM 3033 
mainframe. The CPU time required generally depends 
on the problem. For example, at a Rayleigh number 
of lo4 and RR = 2.6, approximately 2 h of CPU time 
is required to reach convergent and steady-state solu- 
tion. For higher Rayleigh numbers, more CPU time 
is required. The results are presented in terms of 
streamlines, isotherms, flow patterns, local and overall 
heat transfer rates. Since the geometry differs from 
that of a rectangular enclosure, an equivalent con- 
ductivity kcq is introduced to account for variation 
of areas in the inner and outer cylinders. Here the 
equivalent conductivity is taken to be the ratio of heat 
flux due to convection and conduction to that due to 
conduction alone in the plain annulus case 

indrical surface has been checked. The general errors 
are found to be less than 1 .O%. 

Grid refinement studies have also been carried out 
by several sets of uniform meshes at Ra = 105, 
RR = 2.6. The results for the 30 x 36 grid presented 
in this paper are compared with the corresponding 
results of 24 x 20 and 48 x 40 grids, as displayed in 
Fig. 5 which shows the variation of the local k,, with 
azimuthal angle for different mesh numbers. The mesh 
number of 30 x 36 (r x 0) is found to be optimum in 
terms of computer effort and accuracy. The overall 
kq for 20 x 24 is 3.5119,3.4481 for 30 x 36, and 3.4330 
for 48 x 40. The difference between the results for grids 
of 36 x 30 and 48 x 40 is thus less than 0.5%. 

k., = Qconv+cond /Qcond. (17) 

It can be evaluated locally and globally at the inner 
and outer cylinders. The equivalent conductivity k, 
can be interpreted as the thermal conductivity that a 
motionless fluid in the gap would have to transmit the 
same amount of heat as the moving fluid. It can be 
taken as an equivalent Nusselt number for the cylinder 
geometry as well. 

The overall Nusselt number kcq for various Ray- 
leigh numbers is given in Fig. 6. Several other pre- 
viously published results are also shown for compari- 
son. For RR = 2.6 the present results are compared 
with the experimental data of Kuehn and Goldstein 
[I ] ; for RR = 4.0 compared with that of Lee [lo] with 
RR = 5.0; and RR = 1.4 compared with that of the 
correlation curve given by Raithby and Hollands [42]. 
The agreement is again excellent. 

&r&Ye locations for types I, II and III 
Shown in Fig. 3 is the variation of local equivalent Before discussing the possible reduction of heat 

conductivity at the inner and outer cylinders (kqi and transfer by baffles, it is desirable to examine the energy 
k,,) with azimuthal angle by the present compu- transfer process in an unobstructed cylindrical annu- 
tations, and that by Kuehn and Goldstein [l] obtained lus. Isotherms (right) and streamlines (left) for the 
experimentally by interferometry and by numerical case of RR = 4.0 and Ra = lo’, and a dimensionless 
calculations. The radial dimensionless temperature temperature difference ratio of 0.2 are shown in Fig. 
distribution at various azimuthal angles are also com- 7(a). For this high Rayleigh number, the boundary 
pared. This is shown in Fig. 4 for 30”, 90” and 150”. layer is well defined along the inner cylinder, and the 
The present calculations for all three angles compare flow consists of two crescent-shaped convective cells, 
well with the experimental data [l]. Listed in Table 1 symmetric with respect to the vertical central line. The 
are the overall equivalent conductivities by several fluid immediately adjacent to the warm inner cylinder 
other investigators. The overall comparisons are rises due to the buoyant force with a corresponding 
good. Furthermore, the balance of energy at the inner increase in the boundary layer thickness. At the top 
and outer surface and across each concentric cyl- of the inner cylinder the thermal boundary layer 

10 - pmtcalarlation(3ox36) 
------ 9 KwhnhGddslein (numerkal) 

KuehnaGoldatein @wmfW 
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4 

20 40 60 60 loo 120 140 160 160 

FIG. 3. Comparison of local equivalent conductivity kq distribution at inner and outer cylinders at 
Ra = 4.7 x 104, Pr = 0.71 and RR = 2.6. 
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FIG. 4. Comparison of temperature distributions for different angular positions at Ra = 4.7 x 104, Pr = 0.71 
and RR = 2.6. 

around it and also the Ilow separate, forming a ther- 
mal plume. The hot upflowing of fluid impinges on 
the cold outer cylinder surface at f3 = O”, and is cooled. 
The fluid descends along the outer cylinder toward 
the bottom of the annulus. As the fluid approaches the 
bottom at 0 = 180”, it encounters an adverse pressure 
gradient which forces it to separate away from the 
outer cylinder and move to the bottom of the inner 
cylinder. As a result of the impinging hot fluid, the 
local heat transfer rate near the region is expected to 
be high. This can clearly be observed in Fig. 7(a) from 
the dense isotherms near the top of the outer cylinder, 
and from the distribution of keqo in Fig. 8. Since flow 
separation occurs at the bottom of the outer cylinder 
near 180” and at the top of the inner cylinder, mini- 
mum heat transfer is observed in these locations. 
Hence, the key to the success in reducing heat transfer 
lies in blocking direct impingement of the fluid. The 
study of the cylindrical annulus with internal baffles 
of types I, II, III is carried out for this purpose. 

Figure 7(b) shows the streamlines (left) and iso- 
therms (right) with baffle type I. In this case, a single 
azimuthal baffle is inserted symmetrically at the top 

Table 1. Comparison of overall heat transfer rate for air at 
RR = 2.6 

______ ~~~~._~~~ ~~ ~._ - 

Kuehn and Hessami 
Goldstein [I] et al. [l l] Present 

Exp. Num. Num. Num. 
__~ ___ ~_____.___~ - __ 

Ra 4.7 x IO4 5.0 x IO4 5.0 x lo4 4.7 x IO4 
k 41 3.0 3.024 3.26 2.943 
k ev 3.0 2.973 3.05 2.901 
___-___ 

of the inner cylinder. The fluid still flows up along the 
inner cylinder forming a boundary layer and separates 
near the top of it. Due to the presence of the baffle, 
the thermal plume is distorted before being fully 
developed. At the interface between the baffle and the 
fluid, energy exchange occurs, which results in a heat 
transfer from the fluid below the baffle to the fluid at 
the top of the baffle. This can be visualized through 
the isotherms passing through the baffle. Heated by 
the warm fluid, the baffle maintains a temperature 
higher than that of the outer cylinder, so that a second 
cell is generated on the top of the baffle. 

By comparing the isotherms in Fig. 7(a) with those 
in Fig. 7(b), one sees that the isotherms near the outer 
cylinder at 0 = O”, where the maximum local heat flux 
occurs in the plain cylinder case, becomes less dense 
in the presence of the baffle. This is a result of the 
decreased strength of the impinging fluid, which is 
obvious from the peak value of the stream function 
of the second cell in Fig. 7(b) at the top of the baffle. 
At an angle near 60” the isotherms become more dense 
since part of the hot fluid impinges on the region after 
being deflected from the tip of the baffle. However, it 
is not as dense as that at 0 = 0” for the plain cylinder 
case (Fig. 7(a)). Since the fluid does not have enough 
distance to accelerate, the resulting flow is less vigor- 
ous. The temperature inversion at the center of the 
annulus for the plain cylinder case is replaced by strati- 
fied isotherms representing a slow core flow region. 

From the streamline of Fig. 7(b), it is obvious that 
flow still separates near the top of the inner cylinder, 
but due to the presence of the baffle, it has to turn 
over along the baffle surface. At the tip of the baffle, 
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FIG. 5. Local 

14 

13 

12 mesh number 
11 ----- 20x24 

10 - 30x36 
9 -.- 40x48 

%; 

6 
5 
4 

3 
2 

1 

20 40 60 80 loo 120 140 160 180 

8( degree) 

distribution at different grid mesh numbers for an unobstructed annulus 
Pr = 0.71 and RR = 2.6. 

separation occurs with part of the fluid climbing along 
the bafile due to the buoyancy force. The rest is 
deflected off the baffle tip and directed toward the 
outer cylinder due to inertia. This fluid then flows to 
the bottom, completing the circulation. Comparing 
streamlines in Fig. 7(a) with those in Fig. 7(b), the 
point which corresponds to the maximum stream 
function value is pushed to the central region, and the 
stagnant region at the bottom of the annulus has been 
squeezed. The flow pattern is no longer a crescent. It is 
interesting to note the local heat transfer distributions 
along the inner and outer cylinders as shown in Fig. 
8(a). The local maximum heat transfer is greatly 
reduced in the region for 0 = 0”-45” due to the inser- 
tion of the baffle. This effect is due to the fact that the 
hot fluid is prevented from directly impinging on the 
cooled surface. However, the level of heat transfer is 
still high due to the generation of the second cell at 
the top of the baffle. The quantity k,, at 6 > 45” has 
a local minimum and maximum. The minimum is 
from the separation of the second cell and the main 
cell, while the maximum is a result of flow separation 
at the edge of the baffle. As a result of the heat balance 
from the inner to the outer cylinders, the reduction in 
k-i is expected. Actually, the reduction in kcqi can be 
seen in the figure throughout the range of 0”140”. 

RR - 1.25 Raithby 8 Hollands [ 

Ra 

FIG. 6. Overall equivalent conductivity at Pr = 0.71. 

at Ra = IO’. 

The overall heat transfer in this case is reduced by 
16%. 

When the baffle is placed at the bottom of the inner 
cylinder as type II, the isotherms of Figs. 7(a) and (c) 
differ very little. This is because the bottom part of 
the plain cylinder has a stagnant region. This region of 
small convection corresponds to the thermally stable 
fluid between two flat plates, of which the top one is 
warmer. As a result, the baffle does not separate the 
flow but merely pushes the streamlines up a bit. A 
small reduction in heat transfer rate is seen from the 
local k_ and k-i in Fig. 8. In this case, the total 
decrease is about 3.3%. 

When two baffles are inserted at the same time into 
the cylindrical annulus as shown in Fig. l(c), which 
is a combination of types I and II, the top batlIe 
dominates the reduction of heat transfer of the system. 
This can be easily seen by comparing the curve of k,, 
and kqi for types I and III in Fig. 8(a). Streamlines 
however show some differences. In Fig. 7(b) where 
the top baffle exists, the stagnant bottom part in the 
flow is filled out by the fluid motion. In Fig. 7(d) the 
bottom baffle resists the circulation of flow, so that 
fluid has to flow around the baffle. The flow still fills 
most of the bottom region. Compared with Fig. 7(c) 
where only the bottom baffle exists, the ability of the 
flow to penetrate the stagnant region is enhanced due 
to the effect of the top baffle. 

Bafle location for type IV 
When two baffles are symmetrically placed in the 

central portion of the annulus as shown in Fig. 1 (d), 
interestingly enough, a slight increase instead of a 
decrease of heat transfer occurs. In Fig. 7(a) where 
no baffle exists the bottom portion is almost stagnant, 
and the boundary layer around the inner cylinder is 
like a cylinder in an in&rite medium. There is no direct 
impinging of the cold fluid on the surface of the inner 
cylinder near the bottom. However, in Fig. 7(e) where 
side baffles exist, the streamlines are stretched and the 
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FIG. 7. Streamlines and isotherms for different types of baffle at Ra = 10’ and RR = 4.0. 
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FIG. 8. (a) Local /cq variation with azimuthal angle for types I, II and III at Ra = 10’ and RR = 4.0. 
(b) Local kq variation with azimuthal angle for types IV and V at Ra = lo5 and RR = 4.0. 

fluid flows around the baffle from outside. This causes 
an increase in heat transfer near the bottom at 
0 = 180”. As for the outer cylinder, the point where 
separation begins is close to 180” due to the presence 
of the baffle. Obviously heat transfer to the solid sur- 
face is increased. This phenomenon can clearly be 
observed from the local kq on the inner and outer 
cylinder in Fig. 8(b). This effect is not that significant 
in the central portion due to weak convection in that 
region as seen from Fig. 7(a). The effect is more pro- 
nounced at the edge of the baffle on k,, and at the 
bottom on kqi. In this case, overall heat transfer is 
increased by almost 2%. The baffle enhances the flow 
circulation instead of retarding it. It is obvious that the 

position of the baffle has a very significant influence on 
the flow. 

Bafle location for type V (whole partition) 
The heat transfer is reduced by as much as 46% 

when a whole partition is inserted into the cylinders. 
This decrease can be visualized with the aid of stream- 
lines and temperature contours of Fig. 7(f). A com- 
parison of the peak stream function values in both 
parts of the annulus indicates that the strength of the 
flow in either one of the individual parts is less than 
the non-partitioned annulus. This is to be expected 
since the partition temperature lies between TC and 
TH, therefore the effective buoyant force in each annu- 



2132 

a Ra=3.8 X IO* 

u 
c Ra =3.8X IO4 d Ra=3.8Xi05 

FIG. 9. Streamlines and isotherms for different Rayleigh numbers of type III baffle at RR = 4.0. 

u__/ 

b Ra =3.8X103 

H. Q. YANG et al. 

lus is smaller. At this high Rayleigh number of 105, 
the thermal plume is almost absent. From Fig. 8(b), 
the local keqo and keqi are similarly reduced. Thus the 
baffle separates flow into two individual regions so 
that the flow circulation strength and the accompany- 
ing convection motion are reduced. 

Rayleigh number effects 
Figure 9 shows the streamlines and isotherms at 

several Rayleigh numbers for the baffle of type III. At 
low Ra, conduction is dominant, flow is very weak 
and only occurs in the central region at about 0 = 90”. 
Most regions above and below the baffle are stagnant. 
As a result of geometric symmetry of the baffles with 
respect to the center, the flows are nearly symmetric 
with the center near 90”. As the Rayleigh number 
increases, the flow becomes stronger and the center of 
circulation moves up. The presence of the baffle resists 
the motion, therefore the penetration of flow into the 

stagnant region starts in an asymmetric manner with 
more flow in the upper regions of both baffles. Mean- 
while, the fluid at the top is also disturbed, so that 
convection dominates the heat transfer from the lower 
portion of the inner cylinder to around 60” of the outer 
cylinder. At a higher Rayleigh number of 3.8 x 104, the 
fluid motion is somewhat of the boundary layer type 
with all fluid flowing along the surface of the cylinder 
and the baffle. In the central region of the annulus, a 
stratified stationary core appears. It is seen that the 
baffle efficiency in reducing heat transfer is decreasing. 
The variation of the overall average equivalent con- 
ductivity with Ra at RR = 4.0 and 1.4 is shown in Fig. 
10. 

For baffle I with R = 1.4, several isotherms and 
streamlines are shown in Fig. 11. Compared to the cor- 
responding ones with RR = 4.0, one can see that the 
general flow characteristics are similar, but the re- 
gions between baffle and cylinders are more quiescent. 
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the Rayleigh number at RR = 1.4. 

CONCLUDING REMARKS nevertheless, is aimed only at providing physical 
insight to the mechanisms of the suppression of con- 

It should be noted that the baffle thermal con- vection. To find the optimal baffle arrangement as 
ductivity, thickness, radial position and arc length all well as the best material to use, extensive com- 
have certain influences on the results. Our study, putations need to be carried out. Radiation may also 
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FIG. 11. Streamlines and isotherms for different Rayleigh numbers of type I at RR = 1.4. 
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play an important role in the present problem, but a 
separate study is needed. In this regard, the analysis 
and computations in ref. [36] are pertinent. 
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SUPPRESSION DE LA CONVECTION NATURELLE DANS UN ESPACE ANNULAIRE 
HORIZONTAL PAR DES BAFFLES AZIMUTAUX 

R&u&-Des calculs num6riques basis sur la methode du volume de contrdle et des coordonnees orthog- 
onales sont conduits pour traiter la convection naturelle conjuguee dans un espace annulaire cylindrique 
et horizontal. Le but est d’itudier la possibilitb d’annuler la convection par des baflles azimutaux. Ceux- 
ci sont places au sommet, dans le centre et en bas. Le nombre de Rayleigh base sur la largeur d’espace 
annulaire varie entre 10’ et lo6 pour des rapports de rayons de 4,0 et 1,4. Le fluide est l’air dont les 
proprietbs dependent de la temperature. Le moyen le plus efficace pour reduire le transfert thermique est 
d’empecher l’bcoulement direct de la paroi inteme a la paroi exteme. Quand le bathe est B une position 
qui favor& les lignes de courant en forme de croissant, on constate un accroissement du transfert de 
chaleur. On obtient seulement une faible reduction du transfert quand le batBe est place dans la zone morte 

de l’espace annulaire. 

UNTERDRUCKUNG DER NATURLICHEN KONVEKTION IN HORIZONTALEN 
RINGRAUMEN DURCH SEITLICH ANGEBRACHTE BLECHE 

Zusarnmenfassung-Mit Hilfe von Kontroll-Volumina werden numerische Berechnungen mit orthogonalen 
Koordinaten fiir konjugierte natiirliche Konvektion in einem horizontalen zylindrischen Ringraum durch- 
gefiihrt. Das Ziel der Untersuchungen ist eine mogliche Unterdrtickung der Konvektion durch seitliche 
Bleche. Die Bleche sind oben, in der Mitte und unten in dem ringfijnnigen Zwischenraum angebracht. Die 
Rayleigh-Zahl (mit der Spaltbreite des Ringzwischenraums als charakteristischer Lange) wird von lo* bis 
lo6 fur die Radienverhaltnisse von 4,0 und 1,4 variiert. Das verwendete Fluid ist Luft, dessen Stoffei- 
genschaften temperaturabhangig sind. Der effizientere Weg zur Reduzierung des Wiirmetransports ist der 
Fall, wo die Bleche die direkte Strijmung auf den inneren und den iiuDeren Zylinder verhindern. Der 
Warmetibergang wird verbessert, wenn die Bleche an der Stelle angebracht sind, wo die halbmondfirmigen 
Stromlinien gestreckt werden. Nur eine geringe Verminderung des Warmetibergangs tritt auf, wenn die 

Bleche im Stagnationsgebiet des Ringraumes angebracht sind. 

I-I0&4BJIEHWE ECTECTBEHHOtlI KOHBEKHWM B l-OPHBOHTAJIbHbIX KOJIbHEBbIX 
KAHAJIAX C I-IOMOlIIbIO A3MMYTAJIbHbIX HEPEI-OPOAOK 

AlUWTS~OIIpKXCeHHi3~ eCRCTBeHHILII ICOHBeaS BHJ'TpE rOpE3OHTaJIbHOrO ICOJlS~eBOrO KaHaTIa 

ame~yemn wmemo ~eTonoM KomponbHoro 06ehca c mnonb30naxmeh4 opTorommibzx roopm- 
HaT. IJenb mcnenonamx- A3~bBO3MOXH~b~O~~~KKOHeen~C~OMOrUaH,~~BJIbHbO( 

neperoponoK,KoTopbIe pa3MeIsewr B BepKHei%,UeHTpanbHoti B Hmaieii 06nacrxx KomqeBoro LBAILIIB. 

%cno Psnen, oCri0~amoe Ha nemmmie 3a3opa, mMeHmoCb B mam3oHe 1,O x 102-lo6 ~a omome- 
d parUryCOB 4,0 H 1,4. PaBoqeii x%r&KocTbIo Cnym BO3lJyX; ~Wb3aBEcEM~btl~HocHbIX 

CBO&TB OT TeMnepaTypbr. Hae6onee %#exrrmn%& cnoco6 ciirmteinix TeMompe.HoCa-3To pa3hmqe- 

Iiae tE.perOpOJUCH TaKEiM 06pK30M,¶TO6bl OHa ~IIKTcTBOBaJIa lIpKI+fOMy HaTeKaHHEO llOTOKaHa BliyT- 

peZiH& H BHeIlIIiti mnmupbr. ECJIH neperopomta pacnonaranacb n ne~uoti ~acm cepuoesinubrx 
n~HAfi TOP& xrpo~cxogtmo ycmeme mmonepemca. Korea neperopoma HaxomaCb B 3aCTo&xoB 

3OHeKaHKJIa,OThfe%UIOcbTOJIbKOHe60JIbIUOeyMeHbIUeHHeTellJIOBOrOIIOTOKa. 


